An International Scientific Research Journal

Original Research

Icthyofaunal diversity of different reservoirs of Purulia District, West Bengal, India

Authors: Ankita Pradhan¹, Rabindranath Kundu¹ and Nachiketa Bandyopadhyay²

Institution:

1. Department of Aquaculture Management and Technology, Vidyasagar University, West Bengal, India.

2. Registrar, Sidho Kanho Birsha University, Purulia, West Bengal, India

India has 19,370 reservoirs spread over 15 states with an estimated 3.15 million hectare surface area at full capacity, and this is expected to increase due to execution of various water projects in the country. Ichthyofaunal diversity of the different reservoirs of Purulia district, West Bengal was studied in between January 2014 and December 2014. Fish species available at different reservoirs of the district essentially represented the fish faunal diversity and their abundance. The study revealed that thirty seven species (37) belonging to seven orders and fifteen families were recorded in the sampling sites of reservoirs of district. In spite of natural stocks, the reservoirs are usually stocked with fingerlings of Indian major carps and exotic carps. The order Cypriniformes was the most dominant group with 16 species, followed by Perciformes (7species), Siluriformes (6species) and, Channiformes (3 species), Osteoglossiformes and Synbranchiformes (each of 2 species), and Anguilliformes (1 species). Regarding their conservation status, 26 species were of least concern, 1 species was vulnerable, 6 species were near threatened, 1 species was data deficient, and 4 species were not evaluated (IUCN-Version 2014.1). Economical values and their seasonal abundance have also been evaluated. It was concluded that fish species gradually declining in the different Reservoirs of district due to habitat degradation, siltation, and lack of proper management practices and over exploitation could influence the percentage of fish abundance in these reservoirs.

Keywords:

ABSTRACT:

Fish Diversity, Abundance, Reservoirs, IUCN status

Corresponding author: Ankita Pradhan	Article Citation: Ankita Pradhan, Rabindranath Kundu and Nachiketa Bandyopadhyay Icthyofaunal diversity of different Reservoirs of Purulia District, West Bengal, India Journal of Research in Biology (2015) 5(7): 1850-1859
Email Id:	Dates:
ankitapradhan86@yahoo.in	Received: 30 September 2015 Accepted: 05 October 2015 Published: 15 December 2015
Web Address:	This article is governed by the Creative Commons Attribution License (http://creativecommons.org/
http://jresearchbiology.com/	licenses/by/4.0), which gives permission for unrestricted use, non-commercial, distribution and

reproduction in all medium, provided the original work is properly cited.

http://jresearchbiology.com/ documents/RA0565.pdf

Journal of Research in Biology

An International Scientific Research Journal 1850-1859 | JRB | 2015 | Vol 5 | No 7

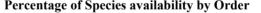
www.jresearchbiology.com

INTRODUCTION

Reservoirs can emerge as one of the most vital components of inland fishery resources of India with gargantuan potential not only to enhance the country's inland fish production but also in providing food and nutritional security to the people, besides providing opportunities for livelihood and employment generation. According to Desai, reservoirs are habitats in almost all major river basins which are engineered by human (Desai, 2006). Reservoirs conserve a variety of native riverine fish species as well as introduced species which leads and supports commercial fisheries. In India potential of fish culture is yet to be fully exploited. In the state of West Bengal the area under reservoir fisheries are 0.17 lakh ha. In fresh water aquaculture, the West Bengal is among the front runner states of India where the average productivity (around 5 tonnes /ha/yr) is significantly higher in comparison to the national average of 2.2 tonnes/ha/yr (Tripathy, 2003). The state West Bengal has 21 districts but the western most districts like Purulia have large no of water bodies mainly in the forms of reservoirs and pond. The district Purulia have a total of 36 no's reservoir covering 5557.74 ha water area (Hand Book of Fisheries Statistics, Govt of West Bengal, 2012 - 13). The main purpose for constructing these reservoirs is not only to supply water for irrigation purpose but also to increase Percentage of Species availability by Order fish production from those water bodies through the introduction of local fishermen communities with the help of Fishery Department, Government of West Bengal. In the present study, our main aim was to observe the Icthyofaunal diversity along with abundance of fish species of the reservoirs spread over in Purulia District.

MATERIALS AND METHODS

The study was conducted every last week of each month between 6.00 and 8.00 a.m. in between January 2014 to December 2014. Fish samples were collected


from the various sampling stations (Table 1) and other valuable information were collected from the local fisherman and resident adjacent to the selected sites of different reservoirs of the district. Fishing was carried out with the help of local skilled fishers using cast net and drag net. The samples were photographed, immediately prior to preservation as formalin (8%) decolorizes the fish colour on long preservation (Bagra and Das, 2010).

Sampling stations

Fish samples were collected from various sampling stations i.e. reservoirs of Purulia Districts of West Bengal, India. The geographical co-ordinates of the major reservoirs of the district are given in Table 1. The specimen study was confined to the listed reservoirs (Table 1) of the district.

Sampling and analysis

The sampling and data collection was done in between January 2014 and December 2014. The fish samples which were caught by the local fishermen from the preselected sampling sites (Table 1) of the district were used for the identification as well as analytical purposes. Fish samples were randomly collected from the reservoirs. Castanets and Dragnets were used for capturing the fishes. All fish species were preserved in 4

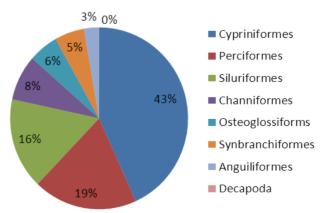


Figure 1. Pie Distribution of commonly available fish species (By Order) present in reservoirs of Purulia District

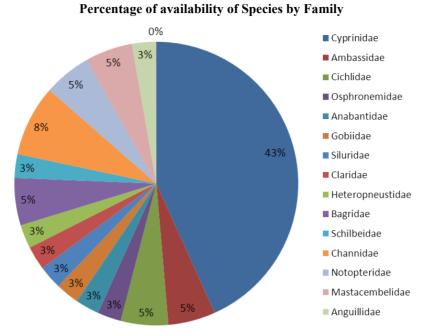


Figure 2. Pie Distribution of commonly available fish species (By Family) present in reservoirs of Purulia District

Serial No	Name of the reservoir	Situated in block	Latitude	Longitude
01	Bandu	Arsha	23.280079	86.138258
02	Upper Bandu	Arsha	23.283942	86.129503
03	Kestabazar	Baghmundi	23.184305	86.086753
04	Khairabera	Baghmundi	23.251473	85.980614
05	Turga	Baghmundi	23.196787	86.067903
06	Kulbera	Baghmundi	23.234226	85.988777
07	Kumari	Balarampur	23.163572	86.284794
08	Hanumata	Balarampur	23.116453	86.258015
09	Barabhum	Balarampur	23.116453	86.258015
10	Tatko	Bandawan	22.927363	86.510351
11	Futiary	Hura	23.384333	86.558475
12	Patloi	Purulia II	23.368918	86.478018
13	Golamarajore	Purulia II	23.425932	86.371236
14	Pithajore	Purulia II	23.464154	86.459297
15	Jamunajore	Purulia II	23.313687	86.397705
16	Rupai	Jhalda - I	23.374381	85.997418
17	Kariordih	Jhalda - I	23.366366	85.981894
18	Narohara	Jhalda - I	23.342836	85.985114
19	Saharjore	Jhalda - II	23.314962	86.049423
20	Kumari Kangsabati	Manbazar - I	22.968329	86.684893
21	Panchet	Neturia	23.635369	86.724523
22	Taragonia	Para	23.475051	86.38908
23	Lipania	Para	23.464913	86.460745
24	Chaka	Puncha	23.167557	86.449809
25	Tara	Purulia I	23.243245	86.348706
26	Moutorjore	Raghunathpur - II	23.533629	86.652741
27	Bero	Raghunathpur - II	23.547703	86.713287
28	Ramchandrapur	Santuri	23.581478	86.837151

Table 1. Name of the sampling sites with geographical location

SI. No.	Order	Family	Scientific name	Common name	Local name	IUCN status	Seasonal abundance	Economic value
			Labeo rohita (Ham.)	Rohu	Rui	ΓC	ΤY	Food fish
7			Labeo calbasu (Ham.)	Black rohu/ karnataka	Kalbose	LC	ΤY	Food fish
ç			I abov bata (Ham)	labeo Dete lehee/ miner	Doto	C	CNA	Each Rab
n			гарео рана (пат.)	bala laucu/ IIIIIIU carn	Dala	ΓC	MC	r000 11511
4			Puntius ticto (Ham.)	Ticto barb	Tit punti	LC	SM	Ornamental, food fish
5	د		Puntius sophore (Ham.)	Pool barb	Jatpunti	LC	SM	Ornamental
9	Cyprinitormes	Cyprinidae	Puntius gelius (Ham.)	Golden dwarf barb	Dor punti	LC	SM	Ornamental
7			Catla catla (Ham.)	Catla	Catla	LC	ΤY	Food fish
8			Amblypharyngodon mola (Ham.)	Mola carplet	Mourala	LC	SM	Ornamental
6			Amblypharyngodon microle- pis (Bleeker)	Indian carplet	Mourala	LC	SM	Ornamental
10			Rasbora daniconius (Ham.)	Slender rasbora	Siram punti	ГC	ТҮ	Ornamental
11			Cirrhinus mrigala (Ham.)	Mrigal	M r i g a l / Mrig	LC	RS	Food fish
12			Cirrhinus reba (Ham.)	Reba carp	Bhangon- bata	LC	SM	Food fish
13			Cyprinus carpio (Linn.)	Wild common carp	Cyprinus	ΛU	ТҮ	Ornamental/food fish
14			Esomus danricus (Ham.)	Flying barb	Darkya	LC	ТΥ	Ornamental
15			Hypophthalmichthys mo- litrix (Val.)	Silver carp	Silver carp	NT	ТҮ	Food fish
16			Ctenopharyngodon idella (Val.)	Grass carp	Grass carp	NE	ΤΥ	Food fish

Table 2. Fish species availability in the reservoirs of Purulia District

WN Ornamental	TY Ornamental	TY Food fish	TY Food fish	SM Ornamental	TY/ Ornamental RS	WN Ornamental/ food fish	SM Food fish	WN Food fish/ ornamental	WN Ornamental/ food fish	SM Ornamental/ food fish	WN Ornamental/ food fish	WN Food fish/ ornamental
LC	LC	NE	IN	LC	DD	ГС	LΝ	NT	LC	LC	LC	LC
Ranjan chanda	Kanta chanda	Nilontica	Tilapia	Khoira	Koi	Bele	Pabda	Boal	Magur	Singhi	Tangra	Tangra
Indian glassy fish	Elongate glass-perchlet	Nile tilapia	Mozambique tilapia	Dwarf gourami	Climbing perch	Bareye goby	Pabdah catfish	Fresh water shark	Air breathing catfish	Stinging catfish	Striped dwart catfish	Tengara catfish
Chanda ranga (Ham.)	Chanda nama (Ham.)	Oreochromis niloticus (Linn.)	Oreochromis mossambicus	Trichogaster lalius (Ham.)	Anabas testudineus (Bloch)	Glossogobius giuris (Ham.)	Ompok pabda (Ham.)	Wallago attu (Bl. & Schn.)	Clarias batrachus (Linn.)	Heteropneustes fos- silis (Bloch)	Mystus vittatus (Bloch)	Mystus tengara (Ham.)
Ambassidae			Cichlidae	Osphronemidae	Anabantidae	Gobiidae		Siluridae	Claridae	Heteropneustidae	2	Bagrıdae
			Perciformes							Siluriformes		
17	18	19	20	21	22	23	24	25	26	27	28	29

Food fish	Ornamental/ food fish	Food fish/ ornamental	Food fish/ ornamental	Food fish	Ornamental/ food fish	Ornamental/ food fish	Ornamental
MN	MM	SM	SM	SM	MM	MM	RS
LC	NE	LC	LC	NE	LC	NT	NT
Pacal	Pacal	Lata	Shol	Cheng	Folui	Chital	Ban fish
Barred spiny eel	Lesser spiny eel	Spotted snakehead	Stripped or Snakehead murrel	Walking snakehead	Bronze featherback	Humped featherback	Indian mottled eel
Macrognathus pancalus (Ham.)	Macrognathus aculeatus (Bloch)	Channa punctata (Bloch)	Channa striata (Bloch)	Channa orientalis (Bl. & Schn.)	Notopterus notopterus (Pallas)	Notopterus chitala/Chitala chitala (Ham.)	Anguilla bengalensis (Gray)
	Mastacembelidae		Channidae			notopteridae	Anguillidae
	Synbranchiformes		Channiformes		9	Osteoglossitormes	Anguilliformes
30	31	32	33	34	35	36	37

LC = least concern, VU = vulnerable, NT = near threatened, NE = not evaluated, DD = data deficient; WN = winter, SM = summer, TY = throughout the year, and RS = rainy season.

Serial No	Order	Number of species	Percentage (%)
1	Cypriniformes	16	43.26
2	Perciformes	7	18.93
3	Siluriformes	6	16.21
4	Channiformes	3	8.10
5	Osteoglossiformes	2	5.40
6	Synbranchiformes	2	5.40
7	Anguilliformes	1	2.70
	Total	37	100.00

Table 4. Composition of the fish communityby family

Serial No	Family	Number of Species	Percent- age (%)
1	Cyprinidae	16	43.26
2	Ambassidae	2	5.41
3	Cichlidae	2	5.41
4	Osphronemidae	1	2.7
5	Anabantidae	1	2.70
6	Gobiidae	1	2.70
7	Siluridae	1	2.70
8	Claridae	1	2.70
9	Heteropneustidae	1	2.70
10	Bagridae	2	5.41
11	Schilbeidae	1	2.70
12	Channidae	3	8.10
13	Notopteridae	2	5.40
14	Mastacembelidae	2	5.41
15	Anguillidae	1	2.70
	Total	37	100.00

Least Concern (LC)	Vulnerable (VU)	Near threatened (NT)	Not evaluated (NE)	Data deficient (DD)
Labeo rohita	Cyprinus carpio	Hypophthalmichthys molitrix	Ctenopharyngodon idella	Anabas testudineus
Labeo calbasu	4	Oreochromis mossambicus	Oreochromis niloticus	
Labeo bata		Ompok pabda	Macrognathus aculeatus	
Puntius ticto		Wallago attu	Channa orientalis	
Puntius sophore		Notopterus chitala/Chitala chitala		
Puntius gelius		Anguilla bengalensis		
Catla catla				
Amblypharyngodon mola				
Amblypharyngodon microlepis				
Rasbora daniconius				
Cirrhinus mrigala				
Cirrhinus reba				
Esomus danricus				
Chanda nama				
Chanda ranga				
Trichogaster lalius				
Glossogobius giuris				
Clarias batrachus				
Heteropneustes fossilis				
Mystus vittatus				
Mystus tengra				
Macrognathus pancalus				
Channa punctata				
Channa striata				
Notopterus notopterus				
Cirrhinus reba				
Esomus danricus				
Chanda nama				
Chanda ranga				
Trichogaster lalius				
Glossogobius giuris				
Clarias batrachus				
Heteropneustes fossilis				
Mystus vittatus				
Mystus tengra				
Macrognathus pancalus				
Channa punctata				
Channa striata				
Motonterus notonterus				

Throughout the year (TY)	Summer (SM)	Rainy season (RS)	Winter (WN)
Labeo rohita	Labeo bata	Cirrhinus mrigala	Chanda ranga
Labeo calbasu	Puntius ticto	Anabas testudineus	Glossogobius giuris
Catla catla	Puntius sophore	Anguilla bengalen-	Wallago attu
		sis	
Rasbora daniconius	Puntius gelius		Clarias batrachus
Cyprinus carpio	Amblypharyngodon mola		Mystus vittatus
Esomus danricus	Amblypharyngodon microlepis		Mystus tengra
Hypophthalmichthys molitrix	Cirrhinus reba		Macrognathus pancalus
Ctenopharyngodon idella	Trichogaster lalius		Macrognathus aculeatus
Chanda nama	Ompok pabda		Notopterus notopterus
Oreochromis mossambicus	Heteropneustes fossilis		Notopterus chitala/
			Chitala chitala
Oreochromis niloticus	Channa punctata		
Anabas testudineus	Channa striata		
	Channa orientalis		

Table 6. Season wise distribution status of commonly available fish species in the Reservoirs of Purulia District

-10% formaldehyde solution as per the size for identification to genus and species using taxonomic keys and standard literatures. Fishes were identified based on belonging to seven orders, 15 families and 26 genera are the standard taxonomic literature (Talwar and Jhingran, 1991; Jayaram, 1999; www.fishbase.org var. 02/2015), of species composition, Cypriniformes were dominant (16 grouped into four categories based on their abundance species) followed by Perciformes (7 species), Siluriformes viz., abundant, moderate, low and very low and (6 categorized according to Red Book of International Osteoglossiformes and Synbranchiformes (each of 2 Union for Conservation of Nature (IUCN).

RESULTS

The reservoirs of the district showed rich Ichthyofauna diversity. The data on the fish community of the reservoirs of Purulia district are presented in Tables 2, Table 3 and Table 4. The periodical survey of the ichthyofauna revealed the occurrence of 37 species belonging to 26 genera, 15 families and 7 orders. On the basis of species composition, Cypriniformes were dominant (16 species) followed by Perciformes (7 species), Siluriformes (6 species) and Channiformes (3 species), Osteoglossiformes and Synbranchiformes (each of 2 species), and Anguilliformes (1 species). The fast growing Indian major carps, occupy a prominent place in Indian reservoirs (Sugunan, 1995) supporting the finding for the study.

DISCUSSION

In the present study a total of 37 species reported in the reservoirs of Purulia Districts. On the basis Channiformes (3 species) and species), species), and Anguilliformes (1 species) (Table 3 and Fig. 1). Species belong to family Cyprinidae were found to be more abundant (43.26%) followed by Channidae (8.10%), Ambassidae (5.41%), Cichlidae (5.41%), Bagridae (5.41%), Mastascembellidae (5.41%), Osphronemidae (2.7%), Anabantidae (2.7%), Gobidae (2.7%), Siluridae (2.7%),Claridae (2.7%), Schilbeidae (2.7%),Heteropneustidae (2.7%), Anguilidae (2.7%) (Table 4 and Fig. 2). The fish recorded from the reservoirs of the Purulia District were Labeo rohita, Labeo bata, Labeo calbasu, Puntius ticto, Puntius sophore, Puntius gelius, Amblypharyngodon Catla catla, mola. Rasbora daniconius, Cirrhinus mrigala, Cirrhinus reba, Cyprinus carpio, Esomus danricus, Hypophthalmichthys molitrix. Ctenopharyngodon idella, Chanda ranga, Chanda nama, Oreochromis niloticus, Oreochromis mossambicus, Trichogaster lalius, Anabas

Amblypharyngodon mola

Anabas testudineus

Anguilla bengalensis

Esomus danricus

Mystus tengara

Notopterus chitala

Ompok pabda

Oreochromis mossambicus

Puntius ticto

Puntius sophore

Wallago attu

Cirrhinus reba

Figure 3. Photograph of some of the identified fishes from the reservoirs of Purulia district

giuris, Ompok pabda, Wallago attu, Clarias batrachus, mainly because of unending anthropogenic pressure. Heteropneustes fossilis, Mystus vittatus, Mystus tengra, Habitat loss and environmental degradation has seriously Macrognathus pancalus, Macrognathus aculeatus, affected the fish fauna which is also supported by Saha et. Channa punctata, Channa striata, Channa orientalis, Notopterus notopterus, Notopterus chitala, Anguilla Purulia district constitute a valuable natural resources in bengalensis (Table 2). The average of fish abundance economic, aesthetic, scientific and educational terms and obtained in the reservoir showed that the species Labeo its conservation and management are critical to the rohita recorded the highest catch by the number. Fish interests of humankind itself. diversity and its abundance are being eroded every day

al, 2013. The fish abundance of the reservoirs of the

CONCLUSION

This ichthyofaunal study indicates that these reservoirs are rich in diversified fish fauna consists of native species, economical, cultivable and rare species of fishes. Now a day's habitat loss and environmental degradation has seriously affected the fish fauna. Conservation of fish diversity assumes top most priority under changing circumstances of gradual habitat degradation. Therefore, a sustainable strategies needs to explore more fish species, utilization and save fish community of these reservoirs. The study will provide future strategies for development and fish conservation.

ACKNOWLEDGEMENTS

The authors are thankful to Dr. Nachiketa Bandyopadhyay, Registrar, SKBU for his valuable suggestion, kind help and inspiration throughout the study and to Mr. Kamalakanta Murmu, Asst. Director of Fisheries, Purulia for providing secondary data. We express our special thanks to the fishermen associated to those reservoirs fishery for providing necessary support during the sampling and field level data collection.

REFERENCE

Bagra K and Das DN. (2010). Fish Diversity of River Siyom of Arunachal Pradesh India : A Case Study. *Our Nature*, 8 (1):164 – 169.

Desai VR. (2006). Reservoir fisheries1st In: Ayyappan, S, Jena, JK, Gopalakrishnan, A and Pandey, AK., (ed.) Handbook of fisheries and aquaculture. *Indian Council of Agricultural Research*, New Delhi, 173-195.

Fish Base, Ver. 08/2015. Available at: <u>http://</u> www.fishbase.org/search.php

IUCN, (2014). "IUCN Red List of Threatened Species (version 2014.1). [Online]. Available at: <u>http://</u>www.iucnredlist.org/

Jayaram, KC. (1999). The Freshwater Fishes of the Indian Region. Delhi, Narendra Publishing House, New Delhi, India.

Saha, MK and Patra, BC. (2013). Present Status of Icthyofaunal Diversity of Damodar River at Burdwan District, West Bengal, India. *International Journal of Scientific and Research Publications*, 3(6):1-11

Sugunan, VV. (1995). Reservoir fisheries in India. FAO *Fisheries Technical Paper*, 345:1-445.

Talwar, PK. and Jhingran, AG. (1991). Inland Fishes of India and adjacent countries, 1 and 2. CRC Press.

Tripathy SD. (2003). Inland Fisheries in India. In: Fish for all National Launch 18-19 December 2003, Kolkata, India, 33-57.

Vijaykumar, K, Vijaylaxmi, C and parveen, Z. (2008). Ichthyofaunal diversity of Kagina River in district gulbarga of Karnataka. The ecoscan. *An International Quarterly Journal of Environmental Sciences*, 2(2):161 – 163.

Submit your articles online at www.jresearchbiology.com

Advantages

- Easy online submission
- Complete Peer review
- Affordable Charges
- Quick processing
- Extensive indexing
- You retain your copyright

submit@jresearchbiology.com

www.jresearchbiology.com/Submit.php